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Abstract

In this project we treat the problem of uncooperative

6D spacecraft pose estimation using monocular camera im-

ages. Building off of the unsupervised domain adaptation

(UDA) approach of Pérez-Villar et al. [9], we try improv-

ing the keypoint localization using (1) replacing the 2D-2D

mean-squared error (MSE) loss used to supervise the UDA

model with an Adaptive Wing (AWing) loss which helps fo-

cus training on foreground over background pixels, and (2)

replacing the two stacked hourglasses of the UDA model

with a Cascaded Pyramid Network (CPN). We show that

these modifications lead to improved performance on find-

ing occluded and otherwise “hard” keypoints and therefore

final pose score.

1. Introduction and background

The spacecraft pose estimation (SPE) problem is to com-
pute the 6D pose of a non-cooperative target spacecraft with
monocular cameras, assumed to be mounted on a small
chaser spacecraft; from a single monocular image, get the
transformation T = [R|t] 2 R3⇥4 where R is the rota-
tion matrix and t the translation vector, relative to a canon-
ical pose (Fig 1). This is important for space orbital mis-
sions which do on-orbit servicing and active debris removal,
spaceflight capabilities which will become increasingly cru-
cial in the next decade.

Challenges that are unique to this context, distinct from
other 6D pose estimation problems, include the lack of
real mission data and the hardware constraints of on-board
deployment. Harsh lighting conditions in space lead to
frequently occluded keypoints, caused by strong shadows
and large variations in pose. Feature-based approaches do
poorly in these variable illumination conditions, low SNR,
and high contrast which is typically present in space im-
agery. Historically, the problem has been treated with two
classes of models (Fig. 2): (1) direct end-to-end deep learn-
ing approaches and (2) hybrid modular approaches. The
latter class of methods, which exploit the geometry of the
problem to optimize pose from a correspondence set, tend

Figure 1. Spacecraft pose estimation is the problem of finding the
relative position (tBC ) and orientation (RBC ) of a target space-
craft reference frame (B) shown in red, with respect to the camera
reference frame (C) in blue, mounted on a chaser spacecraft. Fig-
ure from [7].

to perform better than end-to-end approaches [1, 7], and so
we focus on these in our study.

Hybrid modular approaches typically consist of three
stages (Fig. 3): (1) a spacecraft detection/localization stage
to crop the image, (2) a keypoint prediction stage which
predicts 2D keypoint location of predefined 3D keypoints,
and (3) pose computation to get pose from the 2D-3D corre-
spondences. The first two stages are done using deep learn-
ing and the third typically uses a classical algorithm which
does the outlier removal (e.g. RANSAC) necessary for the
PnP (e.g. EPnP) solver and final pose refinement with opti-
mization techniques.

The hybrid approach requires recovering 3D locations
of keypoints with 3D reconstruction methods, which are
used to construct secondary annotations (such as bounding
boxes, keypoints, segmentation masks, ellipse heatmap an-
notations), so the lack of diverse annotated datasets is a ma-
jor constraint, and the annotated datasets which do exist typ-
ically only contain one target spacecraft type. Many prior
approaches try to exploit well-explored human pose meth-
ods for the spacecraft problem, which is a domain gap to
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Figure 2. The two general classes of solutions to the spacecraft pose estimation problem. From [7].

Figure 3. Schematic showing the typical stages of a hybrid modular approach to SPE. From [7].

cross; in addition to the lack of training data taken in opera-
tional scenarios, which creates a large train-test domain gap
between the synthetic images which are typically generated
for training and real space camera images in deployment.

1.1. Related work

The below summarizes the model which we looked at
most closely and worked on refining over the course of the
project. For a more extended discussion of prior methods of
spacecraft pose estimation, see the survey paper by Pauly et
al. [7].

1.1.1 Spacecraft-UDA

Spacecraft-UDA [8, 9], which ranked second in the 2021
Kelvins Pose Estimation Challenge (SPEC2021) [4], is
an algorithm for unsupervised domain adaptation (when
ground-truth labels are not available for the new domain)
with robust pseudo-labeling by inter-model consensus. The
model incorporates 3D structure into the spacecraft pose
estimation pipeline, via multiple learning losses, to pro-
vide robustness against high illumination shifts between do-
mains. It is a keypoint-based approach, whose core idea is

to train a model that gets monocular images of the target and
returns the expected 2D image location of 3D keypoints and
then retrieves pose from the 2D-3D correspondences with
PnP, with an unsupervised domain adaptation stage done
with iterative pseudo-labeling.

The main model architecture (Fig 4) consists of two
stacked hourglass networks which retrieve image keypoint
locations with two heads to jointly regress keypoints and as-
sociated depth. The motivation for this is that (1) regressing
both location and depth of keypoints enables defining a set
of learning losses which encourage 3D structure keypoint
learning, and (2) a stack of two networks allows the model
to retrieve predictions at two different stages in the network.
Each network of the hourglass receives an image I and re-
turns two heatmaps: a heatmap Ĥ 2 R

N⇥M⇥C represent-
ing the expected image keypoint positions, and a heatmap
D̂

N⇥M⇥C representing the depth of each keypoint.
During training, the stacked hourglass is supervised by

three losses, which are summed to give the final loss `final =
`2D-2D + �1`2D-3D + �2`3D-3D:

1. 2D-2D: consisting of the mean-squared error (MSE)
between the estimated heatmap Ĥ and a ground-truth
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Figure 4. Unsupervised domain adaptation (UDA) model. Figure from [9].

Figure 5. Pseudolabeling procedure for unsupervised domain adaptation (UDA) model. Figure from [9].

heatmap H generated with the ground-truth pose:

`2D-2D =
1

2NMC

2X

j=1

kĤj � �H
jk2F (1)

where j = 1, 2 is the index of the stack and � = 100
controls the gain of the ground-truth Gaussian heatmap
to encourage larger loss around keypoint locations.

2. 2D-3D: the difference between the estimated p̂i

and ground-truth 2D keypoint positions pi compared
against each corresponding keypoint position ṗi gen-
erated by projecting each Pi with the pose estimated
by PnP.
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3. 3D-3D: the difference between the ground-truth pose
T and the pose generated by aligning the 3D estimated
keypoints P̄i with the spacecraft model 3D keypoints
Pi, where the bar accent indicates predictions resulting
from the 3D alignment.

`3D-3D =
1

24

2X

j=1

kT̄ j � T
jk2F

The unsupervised domain adaptation portion is done by
pseudo-labeling with consensus and self-iterative training
(Fig. 5). Given the model trained on a source domain, the
goal is to generate a set of high-confidence pose predictions
Ṫ on the target domain such that the difference between
the true and the estimated labels is small; once this set of
pseudo-labels is generated, these are used to fine-tune the
model over the new domain. This process is run until a mea-
sure for convergence is reached; i.e. until RANSAC con-
verges, which is controlled by (1) the confidence parameter
and (2) the reprojection error. The UDA algorithm requires
a measurement of consensus to promote pseudo-labeling ro-
bustness, which is aided by the hourglass network structure.

2. Methods

2.1. Novel contribution 1: Adaptive wing loss

The base UDA solution considers the pixel-wise mean-
squared error (MSE) between the ground-truth H , gener-
ated by putting 2D Gaussians of standard deviation = 7px
on each projected ground-truth keypoint position, and each
predicted heatmap Ĥ , as the 2D-2D loss learning objec-
tive (Eq. 1). The issues with MSE for heatmap regres-
sion identified by [13] are that (i) MSE is not sensitive
to small errors, which is detrimental to correctly locating
the mode of the Gaussian distribution, particularly for fore-
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ground pixels; and (ii) during training all pixels have the
same loss function and equal weights, but background pix-
els absolutely dominate foreground pixels on a heatmap,
which means that models trained with MSE loss incorrectly
regress background pixels as foreground pixels and there-
fore tend to predict a blurry and dilated heatmap with low
intensity on foreground pixels when compared to ground
truth, particularly for difficult cases such as occluded or
unusually-illuminated landmarks.

Furthermore, in the specific context of the SPE problem
the MSE formulation treats each keypoint independently,
which discourages the network from learning relationships.
The UDA authors deal with this by adding the two other
losses, but in our project we directly improve on the 2D-
2D MSE loss by replacing with an Adaptive Wing (AWing,
AW) loss [13]:

AWing(y, ŷ) =

8
<

:
! ln

✓
1 +

���y�ŷ
✏

���
↵�y

◆
if |y � ŷ| < ✓,

A|y � ŷ|� C otherwise.
(2)

Here y and ŷ are the pixel values on the ground-truth
and predicted heatmaps respectively, !, ✓, ✏ and ↵ are
positive quantities, A = !(1/(1 + (✓/✏)↵�y))(↵ �
y)((✓/✏)(↵�y�1))(1/✏) and C = (✓A�! ln(1+(✓/✏)↵�y))
are defined to make the loss continuous and smooth at
|y � ŷ| = ✓. ✓ is a threshold used to switch between lin-
ear and nonlinear parts of the function, while ! and ✏ are
used to tune the influence on small errors. The exponential
term ↵ � y adapts the shape of the loss function to y and
makes it smooth at zero; when y pixels have values close
to 1 the term is slightly larger than 1 and the nonlinear part
behaves like Wing loss, and when y is small as expected for
background pixels the gradient behaves more similarly to
MSE loss, with a smooth transition in between.

In this way the AWing loss, originally intended to im-
prove facial landmark localization tasks as well as human
pose estimation, can adapt its curvature to different types
of ground-truth heatmap pixels, penalizing more on fore-
ground pixels and less on background pixels. This reduces
small errors on foreground pixels for accurate landmark lo-
calization while tolerating small errors on background pix-
els for better convergence. We also use the Weighted Loss
Map described in [13], which assigns high weights to fore-
ground and difficult background pixels to help training pro-
cess focus more on pixels that are crucial to landmark local-
ization.

2.2. Novel contribution 2: Cascaded Pyramid Net-

work

We further tried replacing the two-stacked hourglass net-
works of UDA with a Cascaded Pyramid Network (CPN) in
order to improve performance on occluded keypoints, invis-
ible keypoints and complex backgrounds. CPN [2] (Figs. 6

and 7), which was originally designed for multi-human pose
estimation to replace typical eight-stacked hourglass net-
works, uses a ResNet backbone, then cascades (1) a Global-
Net feature pyramid network which roughly localizes key-
points, and (2) RefineNet to explicitly handle occluded and
otherwise “hard” keypoints by integrating all levels of fea-
ture representations from the GlobalNet pyramid features
together. In a process referred to as online hard keypoints

mining (OHKM), RefineNet selects the hard keypoints on-
line based on the training loss and in the backward pass
backpropagates the gradients from those selected keypoints
only. Unlike refinement strategies like stacked hourglass,
RefineNet upsamples and concatenates all pyramid features
at the end rather than simply using upsampled features in
order to get contextual information. Here we repurpose the
CPN feature pyramid as a single stage in our multi-stage
design and do OHKM with all three losses from UDA, in-
cluding our substituted AWing loss.

3. Experiment

3.1. Experiment design

3.1.1 Dataset

Deep learning approaches to SPE still heavily rely on anno-
tated data which are difficult to obtain, hence a continued
reliance on synthetic datasets1. All models were trained on
the SPEED+ dataset [5] by the Stanford Space Rendezvous
Laboratory (SLAB), which contains both synthetically gen-
erated images and hardware-in-the-loop images of a half-
scale mock-up of the Tango satellite whose 11 keypoints are
known. There are 60k images in the synthetic dataset
which is used for training and validation. The testing dataset
consists of 2.8k sunlamp images which feature strong il-
lumination and reflections against a black background, and
6.8k lightbox images with softer illumination but in-
creased noise, as well as a simulated Earth background in
a subset of the images.

3.2. Experimental results

3.2.1 Quantitative results

Our results are summarized in Table 1. For each model
we compute the translation error score St, the Euclidean
distance between the estimated translation and ground-truth
translation, the rotation error Sr which is the rotation angle
between estimated and ground-truth quaternions, and then
the final pose score S which combines the two errors.

In addition to a basic SIFT + RANSAC optimization
method and PoseResNet, we compare against SPNv2 [3], a
recent state-of-the-art end-to-end SPE algorithm by SLAB

1Even with synthetic data generation, spacecraft pose datasets typically
contain about 104 �105 images, much smaller than datasets such as YCB
for example.
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Figure 6. Cascaded Pyramid Network (CPN). “L2 loss⇤” refers to the L2 loss with online hard keypoints mining. Figure from [2].

Figure 7. CPN’s output heatmaps from different features, where green dots indicate the ground-truth location of keypoints. Shallow
features have the high spatial resolution for localization but low semantic information for recognition, while deep feature layers have more
semantic information but low spatial resolution due to strided convolution and pooling. Figure from [2].

which builds on prior SLAB work [6, 11], and does ro-
bust multi-task learning and online domain refinement by
training a model which jointly optimizes multiple predic-
tion heads using a shared EfficientDet [12] feature encoder
(EfficientNet backbone with BiFPN to fuse multiple-scale
features). The results shown in the table are from offline
training of SPNv2 on SPEED+ with � = 3, with no tex-
ture randomization augmentation, trained over 20 epochs;
SPNv2 gives two different sets of translation and rotation
scores for the heatmap and EfficientPose heads so we just
report the final pose loss. The CPN modification ended up
being very computationally intensive (due to the need to cal-
culate 5 gradients) but the pose score after 3 epochs was
around 2.76.

Model Epochs St Sr S

Basic SIFT+RANSAC - - - -
SPNv2 20 - - 0.2313
ResNet18 (PoseResNet) 10 1.342 1.2 2.542
Hourglass (Huber/MSE) 10 0.7890 0.3513 1.1403
Hourglass + AWing loss 10 0.7217 0.3618 1.0853

Table 1. Translation St, rotation Sr , and final pose error S scores
for the modifications we tried relative to several benchmarks (SIFT
+ RANSAC, PoseResNet, unmodified UDA with stacked hour-
glasses and MSE loss, SPNv2).

3.2.2 Qualitative results

Figure 8 shows a few examples of the how the stacked-
hourglass UDA model with Adaptive Wing loss improves as
it learns to predict the keypoints and depth. Figure 9 gives
a few examples of the validation results obtained from the
model with AWing loss.

4. Conclusions and future work

In this project, we focused our efforts on improving key-
point localization in the spacecraft pose estimation prob-
lem, which is a nontrivial hurdle in the hybrid modular ap-
proaches typically used to treat the problem. The two im-
provements we implemented were:

1. Replacing the 2D-2D MSE loss used to supervise the
UDA model with an Adaptive Wing (AWing) loss in
conjunction with the Weighted Loss Map defined in
[13] to improve detection of foreground vs background
keypoints;

2. using a Cascaded Pyramid Network (CPN) to first
roughly localize keypoints with a GlobalNet and then
explicitly handle the “hard” (occluded) keypoints with
a RefineNet, which integrates all levels of feature
representations from the GlobalNet pyramid features
together with an online hard keypoint mining loss
(OHKM).
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Figure 8. Visualizing the improvement of the two-stacked hourglass model with the AWing loss modification over the course of training.
The two rows indicate the stack/pyramid level. The leftmost column of each set of images for each step shows the ground-truth heatmap
of the keypoints, the middle column is the keypoint heatmap (PnP) prediction, and the rightmost column is the depth keypoint prediction.

Figure 9. Selected validation results where the rows and columns represent the same information as in the above (Fig. 8).

4.1. Next steps

4.1.1 Heatmap distribution matching

Other 2D-2D losses are possible and could potentially im-
prove upon our keypoint localization results using AWing
loss. A further idea we had was to do heatmap distribution
matching [10], using the Earth mover distance (EMD) to
construct a loss function in order to improve the keypoint lo-
calization. The EMD, also known as the Wasserstein metric,
measures the difference between two probability distribu-
tions as the optimal cost needed to transport the mass from
one distribution to another. The regularized Earth mover’s
distance and its associated loss formulated by [10] is:

E
reg
C (S,D) = hC, pregi where p

reg = argmin
p2P


hC, pi � 1

�
h(p)

�

Lmatching =
KX

k=1

Lk where Lk = E
reg
Ck(S

k
, D

k)

which the paper authors show to perform well for human
pose estimation for the COCO and MPII datasets.

4.2. Future challenges

The SPEED+ dataset only contains one spacecraft, so
there is no need for models to generalize to unknown in-
stances; the most recent (spring 2024) iteration of the
Pose Bowl challenge2 requires generalizing to unknown in-
stances of the object class. This is challenging due to a lack
of datasets which contain diverse spacecraft classes and the
secondary annotations necessary for most current (hybrid
modular) approaches, such as bounding boxes, keypoints,
segmentation masks, and/or ellipse heatmap annotations.
The next challenge is to use 6D pose estimation methods
for unseen objects to develop a spacecraft-agnostic pose es-
timator.

2https://www.drivendata.org/competitions/261/
spacecraft-pose-estimation/page/837/
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