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Photometric analysis of the period variation of DY Her
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ABSTRACT
DY Herculis is a high-amplitude � Scuti star with a relatively short period and large
visual magnitude variations. We conduct a series of photometric observations in the
visible band of DY Her. Using di↵erential photometry, we generate light curves which
allow us to extract its period. We compute the period using maximum-likelihood
estimation with Markov-Chain Monte Carlo, as well as the Lomb-Scargle method. We
add four points to DY Her’s O-C diagram, confirming previously reported decreases
in period.
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1 INTRODUCTION

1.1 Delta Scuti stars

Intrinsic variable stars form a class of objects which vary
in luminosity due to internal forces. The study of intrinsic
variables provides valuable knowledge of the processes which
occur within stars, and helps explain the diversity of stars
observed in the universe.

Delta Scuti (� Sct) stars are a class of pulsating intrinsic
variable stars which lie on the classical instability strip on
and near the main sequence (Breger & Pamyatnykh 1998), a
region of the Hertzsprung-Russell where stars may undergo
self-excited oscillations. They are Pop I short-period pul-
sators of spectral type A or F, with pulsation periods of less
than one day, and are therefore the younger analogs of RR
Lyrae stars (Baglin et al. 1973). They form the second most
numerous group of pulsators in the Galaxy, after pulsating
white dwarfs (Breger 1979).

Pulsations are driven by the -mechanism, or Edding-
ton valve, in the He II ionization zoneBalona et al. (2015).
As helium is heated it becomes more ionized, which is more
opaque. At the dimmest part in the cycle, the star has
highly-ionized opaque helium in its atmosphere blocking
part of its light from escaping; the energy from this “blocked
light” causes the helium to heat up, expand, ionize, become
more transparent and therefore allow more light to pass. As
more light is let through, the star appears brighter and, due
to expansion, the helium begins to cool down again. Through
this mechanism, helium-rich stars swell and shrink.

The pulsational period is related to the structure of the
star through the pulsation equation Pp⇢ = Q, where P is
the fundamental period, ⇢ is density, and Q is the pulsation
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constant in days (Breger 1979). As the stars evolve through
the instability strip, hydrogen fuses into helium, radius in-
creases, density decreases and period P is expected to in-
crease.

1.2 High-amplitude � Scuti stars

High-amplitude � Scuti stars (HADS) are a subclass also
sometimes referred to as dwarf Cepheids or AI Velorum.
Boonyarak et al. (2011) defines HADS stars as variables of
the A3 to F5 spectral type with pulsating periods shorter
than 0.25 days and pulsation amplitudes in Johnson V band
equal or larger than 0.10 magnitudes. Figure 1 shows the
position of HADS stars relative to other � Scuti stars on the
Hertzsprung-Russell diagram. They pulsate radially in the
fundamental or first overtone modes, and are slowly rotating
(McNamara 2000). Their light curves are characterized by
fast brightening and slow fading similar to classical Cepheids
and RR Lyrae ab stars, with sharp maxima and broad min-
ima.

1.3 DY Her

DY Herculis (DY Her, HIP 80903, BD+12 3028) is a HADS
in the constellation Hercules, first discovered by Ho↵meis-
ter in 1935. DY Her has a relatively short period of 214.03
minutes, and its magnitude varies between 10.15 and 10.66
in the V band,1 with radial pulsations in the fundamental
or first overtone mode.

The period decrease of DY Her was first noted by Szeidl
& Mahdy (1981) and confirmed by Rodŕıguez et al. (1995).

1 Data from the International Variable Star Index: https://www.
aavso.org/vsx/index.php?view=detail.top&oid=14958
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Figure 1. The position of � Scuti variables on the instability strip
of the Hertzsprung-Rusell diagram, from McNamara (2000), after
Breger. Within this distribution, high-amplitude � Scuti variables
(HADS) occupy a much more restricted region, indicated by the
two parallel lines just to the right of the central region between
the blue and red edges of the instability strip.

Table 1. Observational properties of DY Her. Data from http:

//vizier.u-strasbg.fr/viz-bin/VizieR-4.

RA Dec Vmax Vmin P (days)

16h 31m 18s +11�59053” 10.15 10.66 0.14863

The star was studied by Derekas et al. in 2003 and 2009
(Derekas et al. 2003, 2009), and by Boonyarak and Jiang in
2007 and 2011 (Boonyarak & Jiang 2007; Boonyarak et al.
2011). These studies have shown that DY Her has a slow,
continuous period decrease, contrary to evolutionary models
which predict that the periods of � Scuti variables should
remain constant or increase.

Several hypotheses have been proposed to explain this
behavior, namely nonlinear multimode stellar oscillations
(Breger & Pamyatnykh 1998) and stellar companions (Boon-
yarak & Jiang 2007). Szeidl (2000) suggested that the star
may be part of a binary system, and Pocs & Szeidl (2000)
used the averaged O-C data and interpreted DY Her’s long-
term O-C diagram in terms of the light-time e↵ect caused
by a hypothetical low-mass binary companion. However, this
hypothesis has been disproven by Derekas et al. (2003, 2009).
Investigation of period changes in HADS stars requires more
rigorous treatment than is currently available in the litera-
ture, and due to their short periods and high amplitudes,
these stars are good targets for small and moderate-sized
telescopes.

2 OBSERVATIONS

2.1 Data acquisition

We conduct a series of photometric observations on DY Her
in order to perform di↵erential photometry, which histori-
cally has been very e↵ective in studying short-period vari-

able stars. A summary of the observational properties of DY
Her is presented in Table 1.

Time-series photometric observations in the V band
were taken using the 16-inch telescope (16”LX200) at the
Stanford Student Observatory (37.4191� N, 122.1818� W)
on the night of 22 May 2017. The telescope is equatorially
mounted and has a Meade Pictor 161 CCD imager focal-
reduced to f/6.3. The field-of-view is 250 ⇥ 16.70, and the
dimensions of the CCD are 3000 ⇥ 2000 pixels, 0.5” each.
Similarly-sized telescopes have been used in studies of DY
Her in the past (Derekas et al. 2009; Boonyarak & Jiang
2007). In addition, archival photometric data from May
2016, using the same telescope, were utilized in analyses.
The observational data are summarized in Table 2.

Camera control was performed using TheSky and
Maxim DL software. The weather conditions were fairly
clear, though some cirrus clouds were present on 22 May
2017; the May 2016 data were taken under relatively better
observing conditions. This allows us to use more exposures
from 2016, and results in smaller errors on our magnitudes
for those three nights. During the 22 May 2017 observation,
the flat-field images were observed to contain a faint dark
halo at the centre; for this reason, when we took our frames
we ensured that DY Her was located away from the centre.

O-C diagrams require the use of a stable and accurate
clock, in order to determine the exact cycle E of the obser-
vation. The credibility of obtained astrophysical information
strictly depends on the reliability of observation times and
their uncertainties. For this study, time was recorded by the
computer-system clock at the Stanford Student Observatory,
which is not connected to the Internet; there may be an o↵-
set in zero point and possibly even variable clock rates.

2.2 Data reduction

CCD observations were reduced in Python, including bias
and dark removal and flat-field corrections using sky-flat im-
ages taken during the evening twilight. For the nights when
biases and darks were taken in sequences of five, we batch
them together to create a master dark and master bias re-
spectively. When calibrating our science images for those
nights, we subtract the master bias and dark images that
are temporally the closest to our target science image. Fig-
ure 2 displays one image of the star field, after calibrations
have been made, with DY Her circled in red.

Frames were visually inspected and those which dis-
played obvious errors were discarded. For example, images
were discarded if the shutter remained closed during the ex-
posure, or if the point sources appeared visibly elongated
due to tracking errors. For our last two observation nights,
we also discarded about 15 images that were the closest to
sunrise because the sunlight degraded their quality. ‘V re-
tained’ in Table 2 is the number of exposures used in the
final analysis.

UTC times given by the computer were converted to he-
liocentric Julian days using the helio_jd function in PyAs-
tronomy. Due to the finite speed of light, the time of ob-
servation depends on the changing position of the observer
in the Solar System; the heliocentric correction accounts for
di↵erences in the Earth’s position with respect to the Sun.

We reduce our data using aperture photometry, with the
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Table 2. Journal of observations of DY Her. Start and end times given in PDT.

Date Bias Dark Flat V V retained Start time End time
Exposure

time (sec)

No. reference

stars

2016-05-18 10 35 10 70 70 9:48pm 12:54am 30 12
2016-05-26 7 45 10 90 87 10:06pm 1:19am 30 12
2016-05-28 80 80 10 160 143 10:07pm 4:21am 30 11
2017-05-22 15 43 10 430 346 8:56pm 3:55am 45 10

Figure 2. 45-second V-band exposure of the star field at 10:38
pm PDT on 22 May 2017. Calibration has been applied and the
target star (DY Her) is circled in red.

aid of the Source Extractor program2. We chose an aper-
ture radius of 6 pixels such that all stars of interest were
contained well within the aperture, while ensuring that the
background annulus (also of width 6 pixels) remained con-
stant.

Di↵erential photometry was conducted by computing
the magnitude di↵erences between DY Her and reference
stars in the field. The reference stars were chosen to be those
with the largest and most consistent flux throughout the
night. The numbers of calibration stars used for each night
are shown in Table 2. While one comparison star and one
check star are typically used (Derekas et al. 2003; Baglin
et al. 1973), we used this method of ensemble di↵erential
photometry in order to reduce statistical errors on our mag-
nitudes arising from the choice of reference stars. A detailed
analysis of the errors on di↵erential magnitudes is presented
in Appendix A. Magnitude errors were on the order of ±0.02,
with greater errors in dusk and dawn.

Using the di↵erential magnitudes, light curves were gen-
erated for each of the four nights of observation, as shown
in Figure 3.

3 DATA ANALYSIS

There are two ways in which we assess the periodicity of
DY Her: through (1) fitting the lightcurves to a function
and determining times of maximum light and (2) the Lomb-

2 https://www.astromatic.net/software/sextractor

Scargle method. In this section, we describe both of thee
methods.

3.1 Fitting maxima

In order to create an O-C diagram, we compute the times of
maximum light from the light curves. We do this by fitting
functions to the lightcurve maxima, and extracting the time
of maximum light from the model, which also allows us to
compute the period.

The peaks were individually fit using polynomial and
log normal functions. We computed a fit that minimizes the

�2 value: �2 = ⌃ ( f (x)�y)
2

�2
i

, where x is the time, y is the flux

with associated error, and f (x) is the model.
We choose to fit both a third-degree polynomial func-

tion and a log-normal distribution to the lightcurve data.
Traditionally, a third- or fifth-order polynomial fit around
the peak is used to determine the time of maximum light
(Derekas et al. 2003, 2009). Fitting a polynomial to obtain
the times of maximum light has some disadvantages. The de-
gree of the fit is somewhat arbitrary, with many non-physical
free parameters. Additionally, the polynomial fit does not
use all of the available data, but only the points around the
maximum.

3.2 Assessing the fit using Markov Chain Monte
Carlo

Once we have models for the lightcurve maxima given the
observed data, how do we evaluate the goodness of the fit?
The maximum likelihood technique is implemented as fol-
lows: we derive the probability for the data given the model,
treat this as a function of the model parameters (the like-
lihood function), and maximize the likelihood with respect
to the parameters.

Markov Chain Monte Carlo (MCMC) forms a class of
algorithms used to find the distribution of parameters that
is consistent with a given data set, and obtaining error esti-
mates on those parameters (Metropolis et al. 1953; Hastings
1970; Gilks et al. 1995). It is useful for sampling from prob-
ability distributions with complex relationships between pa-
rameters; for example, MCMC has been shown to perform
very well on cosmological data (Tegmark et al. 2004).

MCMC performs a guided random walk through the pa-
rameter space. The Markov chain moves from one position
in parameter space to the next, via a transition probability
function that is chosen such that the chain’s asymptotic sta-
tionary distribution equals the posterior probability on the
model parameters.

In order to use this method, we must first have a sample
model f for which we compute the parameter distribution.

MNRAS 000, 1–8 (2017)
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(a) 18 May 2016 (b) 26 May 2016

(c) 28 May 2016 (d) 22 May 2017

Figure 3. Light curves for each of the four nights of observation, in chronological order, with dates indicated under each plot.

Let ✓ represent the parameters of the model, and let (x, y,�)
denote the dataset and errors associated with y. We begin by
rewriting the posterior probability on our model parameters
using Bayes’ theorem:

p(✓ |x, y,�) / p(✓)p(y |x,�, ✓) (1)

where we have dropped the constant term in the denomi-
nator. If we assume that the errors are Gaussian and inde-
pendent, which is the case for the light curves, then we can
write down the likelihood function p(y |x,�, ✓) as a Gaussian:

p(y |x,�, ✓) =
÷
i

1
p

2⇡�i
e�(yi� f (xi,✓))

2/2�2
i (2)

=
÷
i

 
1

p
2⇡�i

!
e��

2 / e��
2
. (3)

Next, we define our prior distribution p(✓), which encodes
any previous knowledge that we have about the parameters.
Since the parameters of our model are arbitrary, without
much physical meaning, we choose to impose a uniform, un-
informative prior distribution on ✓. Therefore, we end up

drawing samples from the distribution e��
2
, which will give

us the maximum likelihood parameters and the associated
errors.

In this study, we sample from a distribution of arbitrary
parameters using the MCMC Hammer (emcee) library in
Python, which implements an a�ne-invariant Hamiltonian
MCMC (Foreman-Mackey et al. 2013). The walkers start in
small distributions around the maximum likelihood values,
and then quickly explore the full posterior distribution. The
number of walkers should be at least an order of magnitude
greater than the degrees of freedom, and we allow for a suf-
ficiently large burn-in period to make sure that the chain is
su�ciently mixed.

We first assess the third-degree polynomial fit. Figure
4 is a time series of one of the parameters in the chain; it
shows the positions (parameter values) of each walker as a
function of the number of steps in the chain. Figure 5 shows
the plots of all generated fits for the peaks in the 22 May
2017 lightcurve, projected into the space of the observed
data points; we see that the fit is very good. We then conduct

MNRAS 000, 1–8 (2017)
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Figure 4. Example of a walk around the parameter space of a
third-degree polynomial fit to the 22 May 2017 data. The burn-
in time was specified to be iteration number = 1000, which is
su�cient.

the same analyses on the 2017 data using the fit to a log-
normal distribution; see figures 6 and 7.

3.3 The Lomb-Scargle periodogram

The Lomb-Scargle method can be used for detecting peri-
odic variation within noisy and unevenly sampled data, and
therefore can be used to calculate the period of DY Her.

The Lomb-Scargle periodogram plots a power at a set
of frequencies (VanderPlas 2017), giving a measure of pe-
riodic content as a function of period. Using the data from
May 2016, the periodogram (Fig 8) displays a strong peak at
214.810 minutes. Other peaks arise from linear combinations
of the measurement frequency and the physical frequency;
for example, in the 2017 data a peak was observed at around
48 seconds, which corresponds to a 45-second exposure with
a 3-second readout time. The height of each peak is a mea-
sure of the significance level of the frequency signal.

3.4 The O-C diagram

In this paper, we construct an O-C diagram spanning 63
years in order to quantify the change in period of DY Her.

Most broadly, O-C diagrams compare the measure of
an observable event and its predicted or foretold value. In
astronomy, an O-C diagram is most commonly used to as-
sess a periodic phenomenon which is believed to be subject
to irregularities. In variable star studies, an O-C diagram
shows the observed times of maximum light (O) minus those
calculated according to an adopted ephemeris (C), plotted
as a function of time. The x-axis represents time, in Julian
days or the number of elapsed cycles E since the zero epoch.
The y-axis is the di↵erence between the observed time of
the event (O) and the time predicted from the existing data
or model of the star (C), for each event (Sterken 2005). The
pattern that shows up in the O-C diagram allows us to assess
the validity of a model or set of predictions; if the predicted

period is even slightly o↵, the discrepancy will accumulate
as time goes on.

For a star with a constant and correct period, points
on the O-C diagram will scatter about a straight horizontal
straight line, with the size of the scatter as an indication
of the accuracy of the observed times of maximum. If the
plot is a sloping line, the period is incorrect but constant.
If it is concave-up, the events are happening later and later
than expected, so the period is increasing. As discussed in
section 1, this is the result expected for � Scuti stars; by the
pulsation equation, periods are expected to increase as they
evolve through the instability strip and increase in radius.

A concave-down curve indicates a shortening period: the
events are happening earlier and earlier than predicted. The
O-C diagram for DY Her has previously been shown to be a
concave-down parabola, indicating a linear decrease in pe-
riod (Derekas et al. 2009). The rate of decrease of the period
can be computed as the leading coe�cient of a parabolic fit,
as described in appendix B.

4 RESULTS

4.1 Period analysis

Table 3 shows the times of maximum light and period of DY
Her calculated through the methods described above.

4.2 O-C diagram

Boonyarak & Jiang (2007) used 97 times of maximum light
to conduct the analysis, and Boonyarak et al. (2011) used
103 times of maximum light. We obtain times of maximum
light from Table 1 of Boonyarak et al. (2011), which was
compiled from previous literature and the International Bul-
letin of Variable Stars (IBVS), and add the four additional
points generated from our data. The times of maximum light
were predicted with the following ephemeris (Derekas et al.
2003, 2009; Boonyarak & Jiang 2007) (the epoch is from the
General Catalogue of Variable Stars, the period from ESA
1997):

HJDmax = 2433439.4871 + 0.1486309 ⇥ E (4)

We use the observational data to update the O-C dia-
gram, in order to assess the validity of previously reported
period decreases. We add 3 or 4 points to the O-C diagram
and check that they are consistent with the quadratic fit re-
ported in the literature. Figure 9 shows the O-C diagram
with our additional points.

For DY Her, the relative change has been calculated
to be 1

P
dP
dt = �2.96 ⇥ 10�8 yr�1, which corresponds to a

decrease in period of 3.801⇥ 10�4 seconds per year (Derekas
et al. 2009). With our data, the quadratic fit to the updated
diagram looks like:

O�C = (�6.84025⇥10�13)E2+(3.74317⇥10�7)E+4.16841⇥10�5

(5)

5 DISCUSSION AND CONCLUSIONS

The aim of this project was to update our knowledge of the
period variations of DY Her, and potentially shed light on

MNRAS 000, 1–8 (2017)
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(a) Peak 1 (b) Peak 2

Figure 5. Plots of all generated third-degree polynomial fits for the peaks in the 22 May 2017 lightcurve.

Table 3. Times of maximum light and period of DY Her calculated with di↵erent methods.

Model
First time of max light

t1 (HJDred)

Second time of max light

t2 (HJDred)
P (min)

3rd-degree
polynomial

for 28 May 2016
57537.79962+.00011

�.00011 57537.94523+.00035
�.00030 209.68960+.52242

�.45774

3rd-degree
polynomial

for 22 May 2017
57896.75081+.00006

�.00006 57896.89656+.00007
�.00007 209.87287+.13638

�.13044

Log-normal
distribution

for 22 May 2017
57896.75041 57896.89912 214.14845

Lomb-Scargle
for May 2016

– – 214.05624

Lomb-Scargle
for 22 May 2017

– – 214.81083

Figure 6. Example of a walk around the parameter space of a
log-normal fit for 22 May 2017.

Figure 7. Plots of all generated log-normal fits for the peaks in
the 22 May 2017 lightcurve.

MNRAS 000, 1–8 (2017)
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(a) Lomb-Scargle periodogram for May 2016 (b) The May 2016 periodogram zoomed into the peak frequency.

(c) Lomb-Scargle periodogram for 22 May 2017
(d) The 22 May 2017 periodogram zoomed into the peak

frequency.

Figure 8.

the origins of these changes. The main deliverables are an
updated O-C diagram, and an estimate for relative changes
in period. In this study, we have confirmed that the period
of DY Her has been continuously decreasing.

There are many phenomena that can lead to period
changes. Two possible causes of period changes are: an un-
seen binary companion, or stellar evolution. With more ob-
servations over longer time spans, we can identify real period
variations caused by potential stellar evolution or binary ef-
fects.
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Balona L. A., Daszyńska-Daszkiewicz J., Pamyatnykh A. A.,
2015, MNRAS, 452, 3073

Boonyarak C., Jiang S., 2007, Astrophysics and Space Science,
310, 285

Boonyarak C., Fu J.-N., Khokhuntod P., Jiang S.-Y., 2011, As-
trophysics and Space Science, 333, 125

Breger M., 1979, Publications of the Astronomical Society of the
Pacific, 91, 5

Breger M., Pamyatnykh A., 1998, arXiv preprint astro-
ph/9802076

Derekas A., et al., 2003, Astronomy & Astrophysics, 402, 733
Derekas A., et al., 2009, Monthly Notices of the Royal Astronom-

ical Society, 394, 995
Foreman-Mackey D., Hogg D. W., Lang D., Goodman J., 2013,

Publications of the Astronomical Society of the Pacific, 125,
306

Gilks W. R., Richardson S., Spiegelhalter D., 1995, Markov chain
Monte Carlo in practice. CRC press

MNRAS 000, 1–8 (2017)

http://dx.doi.org/10.1093/mnras/stv1513
http://adsabs.harvard.edu/abs/2015MNRAS.452.3073B
http://dx.doi.org/10.1007/s10509-007-9517-5


8 Z. Fang and C. Zanoci

Figure 9. The updated O-C diagram for DY Her. The points in
blue are from Boonyarak et al. (2011), while the green points are
computed with our observational data. There are four additional
points in total, though the top two points are nearly overlapping.

Hastings W. K., 1970, Biometrika, 57, 97
McNamara D., 2000, in Delta Scuti and related stars. p. 373
Metropolis N., Rosenbluth A. W., Rosenbluth M. N., Teller A. H.,

Teller E., 1953, The journal of chemical physics, 21, 1087
Pocs M., Szeidl B., 2000, Information Bulletin on Variable Stars,

4832
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APPENDIX A: ERROR ANALYSIS FOR
ENSEMBLE DIFFERENTIAL PHOTOMETRY

Let mDY denote the absolute magnitude of DY Her, with
associated error �DY , as computed through di↵erential pho-
tometry. Suppose we have N non-variable stars in our field
of view that we intend to use as calibration stars. Let the
absolute magnitudes and errors on these stars be mi and �i
respectively; we want to compute the di↵erential magnitude
m of DY Her using this ensemble of calibration stars, for
each of our science images. First, we compute the weighted
average of the magnitude of the calibration stars in the field:

m̄ =
ÕN
i=1 mi�

�2
iÕN

i=1 �
�2
i

, (A1)

with the associated error

�m̄ =

s
1ÕN

i=1 �
�2
i

(A2)

The di↵erential magnitude for DY Her can be computed as

m = mDY � m̄. (A3)

The error on the above quantity will then be

�m =
q
�2
DY + �

2
m̄ =

s
�2
DY +

1ÕN
i=1 �

�2
i

. (A4)

If, for example, all the calibration stars have the same un-
certainty �1, · · · ,�N = �, then the uncertainty on m will be
given by

�m =

s
�2
DY +

�2

N
. (A5)

This implies that using more calibration stars will help de-
crease the uncertainty due to the second term above by a
factor of

p
N, when compared to the method of using just one

calibration star. Choosing multiple stars to use as reference
stars reduces the error.

APPENDIX B: DERIVATION OF THE O-C
FORMULA

The rate of period decrease can be determined from a
quadratic fit to the curve. Sterken (2005) derives the re-
lationship as follows: For period changes linear in time,

P(t) = P0 +
dP
dt

t (B1)

where P0 is the period at time t = 0. Then the average period
over the entire time interval t is

P̄ =
t
E

(B2)

assuming that E cycles have elapsed during time t. Since the
period is linear in time,

P̄ =
P(t) + P0

2 = P0 +
1
2

dP
dt

t (B3)

Suppose that we observe a time of maximum light for the
star at time t. The observed time is then

O = t = P̄E = P0E +
1
2

dP
dt

tE = P0E +
1
2

dP
dt

P̄E2 (B4)

However, if the period were constant, we would predict that
the time of maximum light ought to be

C = P0E (B5)

Therefore

O � C =
1
2 P̄

dP
dt

E2 (B6)

is the di↵erence between the observed and expected times of
the event. If the rate of change is zero, then the O-C diagram
is a horizontal line. If the period is decreasing, then O�C < 0
and we would observe a concave downward parabola. The
numerical value of dP

dt is obtained through a quadratic fit;

units of dP
dt are in days per cycle, seconds for century, or

seconds per year.
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