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1 Introduction

I am interested in applying information geometry to remote sensing data, particularly one active remote
sensing modality for which it shines: synthetic aperture radar (SAR), created using successive pulses of
radio waves which ‘illuminate’ a target scene where the echo of each pulse is recorded using a single beam-
forming antenna. The ordered combination of received signals builds a virtual aperture much longer than the
physical antenna width and is not affected by observational conditions such as clouds or nighttime, making
it good for, for example, monitoring land changes. SAR images contain both the phase and the amplitude
of the backscattered signal for each resolution cell, where the amplitude corresponds to the intensity of the
returned radar energy and the absolute phase is related to the sensor-to-target distance (a fraction of a
complete wavelength).

A single SAR pixel can be represented as z = Ae’¥, where A is amplitude and ¢ is phase, living in C 22 R2.
Pixel data are therefore complex-valued and better described as points on curved statistical manifolds, such
that traditional Euclidean methods fail to capture their intrinsic structure. Other manifold-valued data
besides SAR include the chromaticity and brightness of an RGB image (S? x R), the covariance matrices of
EEG brain activity data (and other cases where covariance matrices are adjusted to image pixels), and data
with values in the SO(n) special orthogonal group (such as electron backscatter diffraction) or in SPD(n)
(such as diffusion tensor MRI).

1.1 Interferometric SAR (InSAR) noise model & manifold representation

InSAR in particular measures the signal phase change between at least two SAR images acquired over the
same area at different times or points in space. It can be used to measure terrain altitude as well as motion,
generating maps of digital elevation and surface deformation respectively. The change in signal phase Ay is
given by the equatimﬂ

4
Ap=/T= %AR + o + t + noise

where A is the wavelength, AR is the target displacement in the line-of-sight, « is the phase shift due to
different atmospheric conditions at the times of the two passes, t arises from the topographic distortions from
the slightly different viewing angles of the passes and the noise term captures decorrelation effects. Each
InSAR pixel represents a phase difference between the outgoing (produced by the satellite) and returning
wave which encodes ground deformation along the radar’s line of sight, so that the goal is to isolate AR even
when the measured data may be noisy and/or incomplete.

The phase component ¢ € [0,27) on its own is circle-valued and lives on the unit circle S, so the
manifold is M = (S!)™*!, where m x [ is the number of pixels in the image. Once an interferogram T
has been produced from two SAR images through complex multiplication = z; - 25 (* is the conjugate), the
consecutive fringes typically have to be unwrapped, which involves interpolating over the 0 to 27 phase jumps

Thttps://site.tre-altamira.com/insar/
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to produce a continuous deformation field. Phase differences between adjacent pixels also produce random
interference effects called ‘speckle’ (included in the noise term above), which results from the interference
of many waves of the same frequency but different phases and amplitudes; it happens because the spatial
resolution of the sensor is not sufficient to resolve individual scatterers, so it has dimensions on the order
of the resolution. This speckle along with the other noise sources poses an obstacle to phase unwrapping
and extracting information from SAR images and is non-Gaussian in general; this denoising step needs to
happen before the phase unwrapping [1.

1.2 Variational methods for image processing: from real- to manifold-valued

Processing manifold-valued images has distinct challenges which affect the typical tasks such as denois-
ing, inpainting and segmentation. In the real-valued case, variational methods (such as total variation or
Mumford-Shah) are well-adapted to these problems, where we can assume non-smooth, convex functionals
and so can use convex optimization techniques.

Total variation (TV) denoising assumes that noisy images have high total variation—the integral of the
image gradient magnitude is quite high—so reducing this should keep the important parts of the image
(namely edges) while reducing spurious details. The seminal work in this was done by Rudin, Osher and
Fatemi (ROF) in 1992 [17]. Noise in real-valued images is typically assumed to be additive, white, and
Gaussian, which is asymptotically justified by the Central Limit Theorem, and a great deal of work has
been done on denoising and restoration of such images. Examples include combining the first and second
order derivatives in regularization functionals or incorporating anisotropies based on the local structures of
the image. Splitting algorithms (splitting the original problem into a sequence of proximal mappings) with
primal-dual optimization are used for minimizing the functionals.

The Gaussian assumptions do not hold with manifold-valued images, where the definition of a Gaussian
distribution is not canonical on a manifold, though several approaches have been proposed to extend Gaussian
distributions in Euclidean space to Riemannian manifolds, generalizing different characteristics of the former.
There had historically been few papers combining results on non-smooth optimization with the general
manifold-valued setting; Bergmann, Weinmann and collaborators’ work generalizes convex models for the
restoration of real-valued images to cyclic and manifold-valued images. In this essay I describe the general
mathematical structure of the denoising problem and summarize about ten years of work from this group
done to apply proposed formulations of manifold-valued regularizersﬂ

1.3 Manifold-valued denoising problem setup

Manifold-valued data live in the space of the tensor product of a manifold with itself (the size of the number
of pixels). This yields discrete energy functionals that map from M into the (extended) real line [4] which
can be minimized.

Consider an image as a mapping from the image grid G = {1,...,n} x{1,...,m} to Riemannian manifold
M. A noisy image is f : V — M, V C G and we want to reconstruct the original image ug : G — M.
Variational approaches generate a restored image u as the minimizer u* of some functional of the form

J(u) =D(u; f)+ aR(u)
—— ——

data regularization

D(-; f) is a data-fitting term measuring the distance to the given data, R is a regularization term (prior)
containing the assumed properties of an ideal (clean) image, and o > 0 is a parameter weighting the influence
of the regularizer. In the case that ¥V = G this is a typical denoising model in the presence of additive Gaussian
noise; if not, missing image values in G\V need to be inpainted.

A usual D for real-valued images with Gaussian noise is the squared Euclidean ¢? distance between f
and u, or otherwise ¢! for robustness to outliers. This can be readily replaced by the squared geodesic

2Mumford-Shah algorithms have also been proposed for manifold-valued data [20], e.g. as the initial step of a segmentation
pipeline, but this is out of the scope of the current essay.



distance d : M x M — R for manifold-valued images, D(u; f) := 3 >, d(us, fi)?, or other sort of geodesic
distance. Choosing appropriate R is more involved. The success of methods are dependent on the choice
of a suitable regularization functional. In the Euclidean case the first-order total variation (TV) has been
shown to perform well for additive white Gaussian noise, as introduced in §I.2] For images f :V — R, the
total-variation norm proposed by [17] is:

Riso(u) := Y |Vu| =) \/|uz'+1,j = uig|? + |ui g — ugl?

4] 4]

Raniso(1) := Y ([uiy1y — wis| + [wi o1 — uig))

0]

where |Vu| is a discrete gradient. ROF sums up the norms of these gradients at the image points, which pre-
serves sharp discontinuities (edges, unlike classic Tikhonov regularization) and is also convex. The isotropic
version of TV is not differentiable and so the anisotropic version is introduced as it may sometimes be easier
to minimize. The ROF method [17] uses gradient descent on the Euler-Lagrange equations of the (scalar-
valued) TV functional with ¢2 norms. Other methods are based on Fenchel duals, ADMM (equivalent to
Douglas-Rachford), and split Bregman methods [13].

Our goal is to find u* := arg min,ecg J (u). Constraining u to a Riemannian manifold is generally a non-
convex constraint which makes optimization much harder. The TV regularization methods are all based on
convex duality, which is not available in a manifold setting. The main challenges to developing appropriate
analogues of non-smooth regularizers are that

e there is in general no additive group on a Riemannian manifold, so a priori addition, scalar multipli-
cation and linear combinations are not well-defined, making it difficult to apply tools from the M =R
linear case;

e the jumps in the values which are measured by usual TV need to be measured with respect to geodesic
distance. Straight lines need to be replaced with geodesics for R as well as D, the estimation of which
may itself be challenging computationally;

e there is a notion of global convexity only for the case of Hadamard manifolds which have nonpositive
sectional curvature [3]. There are cases where J is not convex and has multiple minimizers, such as
the sphere.

2 Methodology

2.1 Lifting methods (extrinsic approach) [18, 16, 19]

The simplest idea for how to treat TV regularization is to embed the manifold into Euclidean space and apply
Euclidean models, with the constraint that the image values need to lie in M. Lifting methods[19] allow us
to transform hard variational problems into convex problems in a suitable higher-dimensional space, via the
Whitney embedding theorem. The lifted models can then be solved to a global optimum, which allows us
to find approximate global minimizers of the original problem.

[12} |18] proposed such a lifting scheme for circle-valued data. They do a TV approach for S!-valued data
by lifting functions with values in S' to functions with values in the universal covering R of S', respecting
the periodicity of the data by lifting the involved functionals at the same time. This is a nonconvex problem
on real-valued data which can be solved with convex relaxation. Lellman [16] extends the lifting approach of
[18] to arbitrary Riemannian manifolds. They reformulate TV as a lifted multilabel optimization problem,
where ADMM can be employed for numerically finding the minimizers. However, the components within
the extrinsic TV decompositions live in the embedding space which makes their interpretation difficult. This
also increases the dimension of the data, and it is beneficial to use the intrinsic metric in many applications
in any case.



2.2 (P-TV regularization (intrinsic)

Building on , Weinmann et al use iterative geodesic averaging to implement a cyclic proximal point
algorithm (CPPA) to compute a minimizer of the variational model and produce algorithms for ¢P-TV for
general Riemannian manifold data. CPPA lets you decompose the TV functional into a sum of functionals in
order to analytically compute the proximal mappings of the functionals on the Riemannian manifold, given
in terms of points on certain geodesics. Their resulting algorithms exclusively perform iterative geodesic
averaging. This means that the only operations needed are those for computing geodesics. They show
the convergence towards a global minimizer for the class of Cartan-Hadamard manifolds (positive definite
matrices equipped with the Fisher-Rao metric, containing many symmetric spaces and which are still convex),
and show robust but slow performance on sphere- and cylinder-valued data. In their book chapter reviewing
these techniques Holler and Weinmann state a theorem that, for data in a (locally compact) Hadamard
space, the iterative geodesic averaging algorithms for TV-regularized denoising (based on methods like CPPA)
converge towards a minimizer of the /P-TV functional.

As an aside, Weinmann et al. show their results on InSAR data where TV minimization with CPPA
is capable of removing almost all of the noise in the InSAR image, and using £* and Huber data terms makes
it slightly more robust to outliers than #2. For InSAR the exponential map, which is needed to compute the
geodesic averages, is particularly simple when considering S! as a unit circle in the complex plane:

exp, (Ap) = ' (PHAe)

where a = €' and Ay €] — m,m[. For two nonantipodal points a and b the inverse exponential map is
exp, 1(b) = arg(b/a), the polar angle of complex number b/a, and the distance between two points on the
sphere is d(a,b) = |arg(b/a)|.

Figure 1: Figure reproduced from showing their results using TV denoising on S'-valued InSAR image
(input image on left) using /2-TV regularization (choosing a = 0.32) and ¢*-TV regularization (choosing
a = 0.60). S! is represented as an interval where the white and black correspond to the phase endpoints
@ =0, ¢ = 2. TV variation minimization removes noise while preserving image structure.

2.3 Higher-order methods: Total generalized variation (TGV)

Building on and earlier work, non-smooth higher-order models have been derived for the manifold-valued
case @ |§|, . These are to address the known drawbacks of TV regularization such as staircasing effects—
TV regularization which only involves the first-order derivatives tends to produce piecewise constant results
with artificial jump discontinuities.

first proposed the (second order) total generalized variation (TGV) functional which balances between
first and second order derivatives. The discrete versions of TV, second order TV, and TGV in the in the



R-valued case are [15]
TV(u) = [[Vaull, TV?(u) = | JVullx
TGVZ(u) = mina; | Vu — w||; 4+ agl|Ewl;

where || - ||; is the £! norm with respect to the spatial component, and an implicit /¥ norm is taken in the
vector components; J is the Jacobian and Ew = %(Jw + JwT) is a symmetrization of the Jacobian matrix
field Jw. o = (a1, ap) € (0,00)? are different weight terms.

[2] generalizes first and second-order nonsmooth variational methods to general symmetric Riemannian
manifolds and use CPPA. They use the idea that the second-order difference term in the Euclidean case can
be written as ||z —2y+ z|| = 2||4 (2 +2) —y|| and define a similar second-order spatial difference on manifolds
using the geodesic distance from the midpoints of the geodesics connecting x with z to y.

To generalize the above formulation of second-order TGV to a manifold setting, we can consider the above
formulation of TGV for vector spaces, which requires us to measure the distance of (discrete) vector fields
that are in general defined in different tangent spaces. As we learned in class, we can do this by parallel-
transporting vector fields to the same tangent space and measuring the distance there. [6], in addition to
defining an extrinsic TGV method and a TGV approach to Lie groups, define a TGV regularizer which
works on manifold valued images as

TGV (u) = (lgnf > alllog,, (wit1) = &illu, + aollé — Pu,(6-1)]

Us

and use gradient descent to compute the minimizers of this intrinsic model. P,, is the approximation
of the parallel transport of &_1 to u;. They approximate parallel transport with the pole ladder (which
coincides with the parallel transport for connected, complete, symmetric Riemannian manifolds); one may
also approximate parallel transport with Schild’s ladder [11], requiring only point operations. They lift the
transported tuple again to the tangent space via the logarithmic map.

2.4 Graph-based IRLS TV [8, [4]

Riemannian optimization methods can be used to compute the minimizer of 7, which are efficient since they
exploit the underlying geometric structure of the manifold. Subsequently, 8] |4] generalize the half-quadratic
minimization (iteratively reweighted least squares) introduced by [14] to manifold-valued images using a
quasi-Newton method. They treat G as vertices of a graph with edge set £ := {(i,7) : 1 € G,j € N(i)} where
the regularizing term sums over the edge set £. They focus on the multiplicative half-quadratic minimization
method for denoising/inpainting both in the anisotropic and isotropic case, which is to repeatedly compute
the exponential map kD) = exp,(r Nr with gradient descent in the direction 7, € T; M with Newton’s
method. They show convergence of the algorithm for images with entries in an Hadamard space, for example
the manifold of positive definite matrices.

2.5 Recent work
2.5.1 Fenchel duality

In sum, efforts have been made to translate convex optimization techniques to manifolds for the image de-
noising problem, with certain results shown on Hadamard manifolds (complete, simply-connected Riemanian
manifolds of nonpositive sectional curvature), which behave well in certain ways but don’t have all of the
desired properties for convex analysis. For example, somewhat more recently [5], with a new formulation of
the Fenchel conjugate for functions on the manifold, derive a Riemannian primal-dual non-smooth optimiza-
tion problem and prove its convergence for the case of Hadamard manifolds under appropriate assumptions.
They apply this to the anisotropic and isotropic ¢2-TV with squared distance D term, i.e. the ROF variant
for Riemannian manifolds, performing favorably against the Douglas-Rachford algorithm on manifolds of

nonpositive curvature, and possibly even converging on manifolds of positive curvature, namely the sphere
s2.



2.5.2 Future directions

These manifold-valued image denoising techniques have so far mostly been demonstrated on toy datasets; a
potentially rich area of research would be to show how well they can be implemented using these developed
methods described in this essay to real datasets. Tools such as MVIRT]’|-which is no longer maintained, but
has been succeeded by implementations in Julia, MATLAB and Python*l-and manop can be used to try out
these methods. I would be interested in trying to implement these algorithms for SAR, including Sentinel-1
SAR, TerraSAR-X, and the upcoming NISAR mission, in particular to see whether these algorithms are
tractable and scalable for the growing volume of SAR datasets.
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